Sumitomo
Published

Putting More Teeth In Thread Whirling

When it comes to producing OD threads in difficult-to-machine metals, few processes are as fast or as efficient as the thread whirling process. Although the process is not new, its popularity is increasing because of the growing availability of thread whirling tooling for single-spindle Swiss screw machines that provides a relatively inexpensive alternative to investing in dedicated thread whirling machines.

Share

When it comes to producing OD threads in difficult-to-machine metals, few processes are as fast or as efficient as the thread whirling process. Although the process is not new, its popularity is increasing because of the growing availability of thread whirling tooling for single-spindle Swiss screw machines that provides a relatively inexpensive alternative to investing in dedicated thread whirling machines.

In the thread whirling process, the blank to be threaded extends from the machine spindle, rotating at low rpm. A ring-shaped toolholder contains several identical, evenly spaced, formed inserts whose cutting edges face the opening in the ring (see photo). It rotates on a slightly off-center axis about the blank, rotating in the same direction as the blank but at a much higher rpm. As the toolholder “whirls” about the blank, each of the inserts in turn takes a bite of it. Unlike single-point threading, in which one cutting edge takes the entire cutting load over several passes, the thread whirling process distributes the cutting load over several teeth—and the thread is cut to full depth in a single pass, making for much shorter cycle times.

 One of newest thread whirling tools on the market is an addition to the Schwanog WEP indexable insert system available from GST Tooling Corp. (Roselle, Illinois). The toolholder features five triangular inserts instead of the three circular cutters used on a competitive thread-whirling toolholder, which should make for lighter chip loads and longer tool life. When tool wear occurs, each insert can be removed with one screw, indexed to a fresh edge and secured. Worn inserts can be resharpened by grinding. GST supplies the inserts to the customer ground to the desired thread form.

The sequence of illustrations below shows the thread whirling process. In the first frame, the tool is set to the appropriate helix angle and positioned in front of the spindle. The second frame shows the threading in process. The thread is created by the C-axis rotation of the blank and its longitudinal movement in the Z axis. As the side view shows, only one of the inserts engages the blank at any given time. In the final frame, after the desired thread length has been formed in a single pass, tool and threaded blank separate radially and axially.

As shown in the photo to the right, the thread whirling toolholder installs in an attachment that mounts on one of the Swiss screw machine’s rotary tool stations. The thread whirling tool can be used on all Star, Meier and other single-spindle Swiss screw machines. The attachment can be moved among several machines in the shop as job scheduling requires.

Schwanog developed the thread whirling system in part to meet the growing demand for medical and dental implants. The components for such implants are made primarily from stainless steel or titanium to ensure a high level of biocompatibility. Thread whirling on a single-spindle Swiss screw machine provides the muscle needed to thread these difficult-to-machine metals to the precision required.

The system also offers significant cost savings compared with competitive processes such as thread milling. Indexable inserts permit fast substitutions when replacing worn edges or setting up for the next job. Schwanog claims there is a significant increase in tool service life compared with milling cutters. The company says there is also a significant savings in finishing costs because no thread finishing is required for the thread whirling process.

Ingersoll Cutting Tools
Sumitomo
Specialized Plastic Packaging for Cutting Tools
IMCO
Kyocera SGS
Iscar
Horn USA
CERATIZIT

Related Content

CAM-Driven Lathe Questions

There can be hidden issues using legacy cam-driven lathes that can be overcome using new CNC technology. Here are three to keep in mind.

Read More

Software Controls Chip Breaking in Thread Turning Operations

This cutting tool manufacturer has developed a software module for chip control of thread turning operations in virtually any CNC lathe, even for older machines, using specific tooling and software.

Read More
Turning Machines

5-Axis Machining Centers Transform Medical Swiss Shop

Traditionally a Swiss machine shop, Swiss Precision Machining Inc. discovers a five-axis machining center that has led the company to substantial growth. (Includes video.)

Read More
Automation

Pursuit of Parts Collector Spearheads New Enterprise

While searching for a small parts accumulator for Swiss-type lathes, this machine shop CEO not only found what he was looking for but also discovered how to become a distributor for the unique product.

Read More

Read Next

Tooling

The Value of Swiss-Types Milling Rectangular Medical Parts

High-speed spindle technology was key to effective milling of small cardiac monitoring components complete on a CNC sliding-headstock machine platform instead of running them across two mills.

Read More
Automation

Predicting the ROI of Robotic Automation

Various methodologies paired with online tools can help small to mid-sized manufacturers determine how to predict and calculate the potential economic benefits of robotic equipment for their specific needs.

Read More

Fielding Manufacturers’ FAQs about CMMC

Here are answers to frequently asked questions we as a provider of testing, consulting, information and compliance services receive about Cybersecurity Maturity Model Certification.

Read More
Iscar