Making the Cut
As this short case study illustrates, Kennametal’s grooving and cutoff tools provide more precise chip control and extended tool life.
Recent years have seen the development of multipurpose cutoff tools that are able to perform as grooving, turning and profiling tools, giving manufacturers the ability to simplify setups and shorten production cycles.
From hand-ground bits to high-speed steel blades to indexable carbide inserts, cutoff tool technology has continued to improve over the years, increasing metalcutting efficiency and lowering operational expenses. A big step in that evolution came with the development in recent years of multipurpose cutoff tools that are able to perform as grooving, turning and profiling tools, giving manufacturers the ability to simplify setups and shorten production cycles, and in some cases, keep fewer tools in the crib.
A case in point is EMC Precision, a precision machining job shop headquartered in Elyria, Ohio. Since 1925, the company has provided prototype to production machining and value-added services to a range of industries including fluid management, hydraulic fluid and power, automotive, recreational, and other OEMs. Ian Dotson, manufacturing engineer at EMC’s facility in Sheridan, Indiana, says he was happy with the tool life and performance of his existing cutoff solution, and was only looking for a reduction in his tooling costs when he called his local Kennametal distributor. It was then he learned about Kennametal’s Beyond Evolution, a single-sided grooving and cutoff system with multidirectional turning capability, through-tool coolant, chip control, and “Triple V” secure seating geometry.
“We were using a 0.118-inch wide PVD-coated insert to cut off 0.75-inch diameter 4140 steel hydraulic actuators,” he says. “We swapped out the old tool for a Kennametal Beyond Evolution cutoff and kept the feeds and speeds the same. After several runs we determined tool life was essentially identical, so from a performance perspective there was no difference, at least not on this job. But the Beyond Evolution inserts are dramatically less expensive, roughly 40 percent of what we were paying for our legacy tools, so it was a clear win for us.”
The next win came on a job Mr. Dotson was running on one of EMC’s CNC lathes; a transmission gear shaft made of 1-1/4 inch 8620 steel and using a 0.236-inch wide tool to back turn a journal on the left side of the part prior to cutoff. In this application, insert cost was still a concern, but Dotson’s primary goal was tool life improvement.
“The lathe isn’t equipped with high pressure cutting fluid, and the standard pump was unable to generate enough pressure for us to utilize coolant through the tool on our old cutoff system,” he explains. “Because of this, we’ve been stuck with flood coolant, and have always had some chip control issues as a result—the chip would roll back on itself and starve the cutting edge of coolant.”
Despite the less than optimal cutting conditions, the Beyond Evolution performed beyond expectations. “We achieved very good results,” Mr. Dotson says. “This time, we increased the cutting speed a bit, from 350 to 400 sfm, and bumped up the feed rates by about 30 percent. Even so, tool life increased threefold, to just over 2,600 pieces per insert. I’m confident we could have cranked up the feeds and speeds even more, especially if we had plumbed the tool for coolant through, but there was no need. This operation supplies another machine, and that one was already running as fast as it could go. The big thing for us was getting more parts between tool changes, and that’s exactly what the Beyond Evolution did.”
Specially designed coolant delivery channels in the Beyond Evolution system separate and direct cutting fluid to where it’s needed most: underneath the chip and into the work area.
Related Content
Data Matrix Codes Offer Cutting Tool Traceability
A company’s quest to discover errors in a manufacturing process has led to printing data matrix codes on its cutting tools that provide a wealth of information for both the user and this cutting tool manufacturer.
Read MoreParting Off: The Case for Standardizing on Sawing
The value of rotary saw cutting for parting off operations could boil down to simple economics paired with process efficiency gains.
Read MoreCNC Turning Tips for HRSA Materials
Rough-turning, heat-resistant superalloys can be challenging. However, new carbide insert technology provides the capability to perform high-speed, high-feed roughing in a single pass.
Read MoreThe Value of Tool Monitoring on Rotary Transfer Machines
By using a tool monitoring system, shops can save costs associated with machine maintenance and downtime for tool changes while increasing cutting performance.
Read MoreRead Next
Predicting the ROI of Robotic Automation
Various methodologies paired with online tools can help small to mid-sized manufacturers determine how to predict and calculate the potential economic benefits of robotic equipment for their specific needs.
Read MoreThe Value of Swiss-Types Milling Rectangular Medical Parts
High-speed spindle technology was key to effective milling of small cardiac monitoring components complete on a CNC sliding-headstock machine platform instead of running them across two mills.
Read MoreAvoid the 7 Deadly Sins of Manufacturing
Identifying and preventing these manufacturing sins will reduce or eliminate unnecessary waste, improve efficiency and productivity as well as protect profitability and cash flow.
Read More