Horn USA
Updated Published

What Robotics Means for the Cutting Tools Industry

Friend or foe? Helper or fiend? Here’s what robotics really mean for the cutting tools industry and which pitfalls to avoid.

Thomson Mathews, ANCA Software Product Manager

Share

The rise of the robots is pervasive across all verticals, including the cutting tools industry. As more and more manufacturers turn to leaner processes, many see robotics as a way to increase productivity, improve precision and reduce labor costs. This has led some to ask whether robotics will replace humans completely and has led others to ask if the benefits are just too good to be true. 

In 2016, companies introduced more than 34,000 robotic systems in the United States alone, according to the Robotic Industries Association. And while upfront costs can seem prohibitive to many, the reduction in operating costs, ease of programming and potential for increased productivity is enough for many to fully automate their machining.

In particular the cutting tools industry has been using robotics to take over the repetitive tasks once done by humans including manual loading, inspection, and removal of tools and materials. Some manufacturers are even using robotics to work 24/7, taking their production to a ‘lights out’ level with minimal input from humans.

But, as with any advancement in technology, there are manufacturers who are doing it well and others who are not.

When Robots Go Wrong

Probably the most famous case of robotics not meeting expectations is from Tesla, which tried to implement a fully robotic system to manage the production of its Model 3 electric car. The process simply didn’t work and Tesla was unable to deliver the volume of cars it had promised.

After a dismal first quarter in 2018, the company’s CEO Elon Musk was forced to bring in humans to replace the robots. In Mr. Musk’s own words, “Excessive automation at Tesla was a mistake…humans are underrated.”

Tesla’s big mistake was not in automating, but in not considering its whole supply chain and planning appropriately. While parts of the automated processes were increasing production as promised, the chain as a whole was not. In the end there were production bottlenecks down the supply chain. It didn’t matter how fast one part of the process was completed if the next part of the process couldn’t keep up.

What the cutting tools industry can learn from Tesla is that companies need to consider how the entire system works—what connects with what and where the dependencies are. There’s no point in being faster at one stage of the process if the next step can’t keep up. Get the cadence right before jumping in.

When Robots Go Right

In contrast, Fraisa, a Swiss-based business that offers its customer a complete range of solid round tools with end mills, drills and taps, successfully shifted to lights out production for 50 hours a week with surprising results.

Not only did the company increase its productive hours from 105 per week to 150 per week per machine, it reduced its operation costs by half. Workers retained their salaries and the business invested more time in upskilling them in other manufacturing processes. The company now has a more engaged and skilled workforce that focuses on value-added work rather than monitoring manual processes. It has meant less shift work, more family friendly work hours and a win-win-win for customers, the business and its workers.

Fraisa’s success comes from ensuring its machines are fully connected to its ERP systems, so that the company can monitor efficiencies throughout the entire supply chain.

It’s Not Set and Forget

Other bottlenecks may occur because of a lack of in-house programming skills. While a company’s general labor costs may be cut, it needs to allow extra hours for programming. Companies either need to employ specialized robotic programmers or invest in a system that translates the requirements—the company tells the application what it needs, and the system tells the robots how to do it.

Robots are here to support the humans in the cutting tool industry and beyond. In return, robots need planning, monitoring and programming support from us humans to be their best.

About the Author

Thomson Mathew

Thomson Mathew is ANCA’s lead software expert and works currently as Software Product Manager. Starting his career at ANCA in 1997, he worked hand with customers in all regions as application engineer to find solutions and test the limits of the ANCA’s software products to design and grind the best tools. From there he led the research and development team to design and test laser Plus, P-axis, and various software products including ToolRoom, ToolDraft, Management suite and CIM3D releases.

Star swiss-type automatic lathes
Nomura DS
World Machine Tool Survey
The Best Abrasive for Precision Surface Treatment
SolidCAM
Marubeni Citizen CNC
Techspex
Horn USA
PMTS 2025 Register Now!
Kyocera

Related Content

Cutting Tools

4 Strategies for Managing Chip Control

Having strategies in place for managing chips is an important part of protecting the production process, from tool life to product quality.

Read More

Starting Small with Automation

Quick-change workholding and flexible robotic automation started this small shop on the path to success.

Read More
Medical

The Value of Swiss-Types Milling Rectangular Medical Parts

High-speed spindle technology was key to effective milling of small cardiac monitoring components complete on a CNC sliding-headstock machine platform instead of running them across two mills.

Read More
Cutting Tools

CNC Turning Tips for HRSA Materials

Rough-turning, heat-resistant superalloys can be challenging. However, new carbide insert technology provides the capability to perform high-speed, high-feed roughing in a single pass.

Read More

Read Next

Data-Driven Manufacturing

Improving Automation with Collaborative Robots

Learn more about collaborative robots, which are designed to ease the transition to automation by working directly alongside employees, with no need for safety caging.

Read More
Turning Machines

Robotic Cell Cuts Cycle Time, Improves Part Quality

Sew-Eurodrive Inc. worked with Okuma America’s authorized systems dealer to design an automated cell that includes an automatic magazine bar feeder that loads 6-ft. lengths of barstock into the machine. The shop also switched to an Okuma twin spindle, twin turret turning center so all of the machining operations are completed in one setup.

Read More
Automation

Developing a Company Plan for Robotics

It’s a good time for shops to re-evaluate the impact robotic automation can have on productivity.

Read More
World Machine Tool Survey